In our last course, "Generative AI Fundamentals," we looked at the key principles and theories that underpin Generative AI. Students gained knowledge of the many varieties of generative models, such as autoregressive models, Generative Adversarial Networks (GANs), and Variational Autoencoders (VAEs). To further comprehend how these models produce fresh data, we delved into foundational mathematics, including distributions of probabilities and neural network topologies. Students were also taught fundamental ideas like latent spaces, sampling techniques, and the training procedures that enable generative models to acquire knowledge from data.
Our focus in this intermediate/advanced course will shift from theory to practice. Using well-known frameworks like TensorFlow and PyTorch, students will acquire practical knowledge in creating and optimizing generative models. Let’s begin.
Hello and welcome to "Generative AI: Intermediate and Advanced." With an emphasis on advanced approaches and practical application, this course will take you beyond the foundations of Generative AI. In this course, you will learn how to use frameworks like as TensorFlow and PyTorch to construct, optimize, and evaluate generative models. Complex generating problems can be tackled with the help of sophisticated approaches like GANs, VAEs, StyleGAN, and CycleGAN. Important subjects such as data quality evaluation, model optimization, and transfer learning will also be covered.
You should come into this course with a strong grasp of neural networks, Python, and fundamental generative AI ideas at the very least. This course will teach you how to build complex generative models, improve their performance via tuning, and then use those models to solve real-world issues. You will also learn how to assess and enhance the quality of produced data, setting you up to be an innovator in artificial intelligence.
Course Outline and Goals:
Prerequisites:
Students will leave this course with the knowledge and abilities necessary to develop advanced generative AI models, train them to solve real-world issues using these models, and ultimately become the next generation of AI innovators.
In our last course, "Generative AI Fundamentals," we looked at the key principles and theories that underpin Generative AI. Students gained knowledge of the many varieties of generative models, such as autoregressive models, Generative Adversarial Networks (GANs), and Variational Autoencoders (VAEs). To further comprehend how these models produce fresh data, we delved into foundational mathematics, including distributions of probabilities and neural network topologies. Students were also taught fundamental ideas like latent spaces, sampling techniques, and the training procedures that enable generative models to acquire knowledge from data.
Our focus in this intermediate/advanced course will shift from theory to practice. Using well-known frameworks like TensorFlow and PyTorch, students will acquire practical knowledge in creating and optimizing generative models. Let’s begin.
Hello and welcome to "Generative AI: Intermediate and Advanced." With an emphasis on advanced approaches and practical application, this course will take you beyond the foundations of Generative AI. In this course, you will learn how to use frameworks like as TensorFlow and PyTorch to construct, optimize, and evaluate generative models. Complex generating problems can be tackled with the help of sophisticated approaches like GANs, VAEs, StyleGAN, and CycleGAN. Important subjects such as data quality evaluation, model optimization, and transfer learning will also be covered.
You should come into this course with a strong grasp of neural networks, Python, and fundamental generative AI ideas at the very least. This course will teach you how to build complex generative models, improve their performance via tuning, and then use those models to solve real-world issues. You will also learn how to assess and enhance the quality of produced data, setting you up to be an innovator in artificial intelligence.
Course Outline and Goals:
Prerequisites:
Students will leave this course with the knowledge and abilities necessary to develop advanced generative AI models, train them to solve real-world issues using these models, and ultimately become the next generation of AI innovators.
Copyrights © 2024 letsupdateskills All rights reserved